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ABSTRACT
Traditionally, the sliding window based activity recogni-
tion chain (ARC) has been dominating practical applications,
in which features are carefully optimized towards scenario
specifics. Recently, end-to-end, deep learning methods, that
do not discriminate between representation learning and
classifier optimization, have become very popular also for
HAR using wearables, promising "out-of-the-box" modeling
with superior recognition capabilities. In this paper, we re-
visit and analyze specifically the role feature representations
play in HAR using wearables. In a systematic exploration we
evaluate eight different feature extractionmethods, including
conventional heuristics and recent representation learning
methods, and assess their capabilities for effective activity
recognition on five benchmarks. Optimized feature learning
integrated into the conventional ARC leads to comparable if
not better recognition results as if using end-to-end learn-
ing methods, while at the same time offering practitioners
more flexibility to optimize their systems towards specifics
of wearables and their constraints and limitations.

CCS CONCEPTS
• Human-centered computing → Ubiquitous and mo-
bile computing; • Computing methodologies→Artifi-
cial intelligence; Supervised learning by classification.
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1 INTRODUCTION
Human activity recognition (HAR) – which involves the au-
tomated inference of what people do and when – constitutes
a central aspect of wearable computing. Since its inception, a
multitude of sensing modalities have been explored and are
used to capture human activities. Essentially, HAR utilizes
body-worn sensors to record movement data, which are then
analyzed through a combination of signal processing and
machine learning techniques. The goal is to recognize–i.e.,
segment and classify–either finite sets of activities of interest,
or to study them in an open-ended manner.
In [6], the Activity Recognition Chain (ARC) is defined

as a “sequence of signal processing, pattern recognition and
machine learning techniques that implements a specific ac-
tivity recognition system behavior”. Traditionally, HAR has
been based on (variants of) the ARC, which describes a pro-
cessing pipeline from sensory data to the classification of
portions (segments) of subsequent readings into activities of
interest (or the null class). In recent years, end-to-end learn-
ing approaches have been adopted for HAR using wearables,
primarily due to their promise of integrated learning – which
would effectively eliminate manual crafting and tuning of
suitable data representations. This advantage, coupled with
astonishing classification capabilities and transfer learning
has made end-to-end learning models the de facto approach
studied in the last few years. Although end-to-end learning
models seem to outperform the conventional ARC, the per-
formance boost comes with the price of requiring substantial
computational resources (even though considerable progress
has been made in the efficient deployment of deep learning
models on resource-constrained devices [1, 5, 11, 26]), and
considerable training sets of annotated sample data.
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No clear consensus exists regarding the gold standard fea-
ture representation for HAR using wearables, yet the state-
of-the-art can broadly be summarized in three categories: i)
Statistical features, which include a host of heuristics such
as the mean and standard deviation, or spectral properties
that describe the underlying signal in general, but do not
carry any domain related knowledge, often requiring tweak-
ing across tasks and domains [23, 37]; ii) Distribution-based
representations, which completely abstract away from the
application domain and instead focus on compact signal rep-
resentations, thereby minimizing reconstruction loss [19];
and iii) Learned features, that derive representations directly
from raw sensor data themselves, typically using unsuper-
vised or supervised learning methods and dimensionality
reduction techniques [2, 17, 37].

With the arrival of end-to-end learning approaches in the
field of HAR, the central question this work seeks to answer
is:What role do the data representations play in human activity
recognition? With a view on state-of-the-art representation
learning methods, we explore to what extent the representa-
tion (rather than the classification backend) still contributes
to the overall effectiveness of HAR methods, thereby not
limiting our analysis to either the more conventional ARC
approach, or to Deep Learning based methods. Exploring this
question enables us to draw conclusions that impact system
design for wearable computing scenarios that typically come
with substantial resource constraints, and challenging data
qualities due to the nature of the recording apparatus.

We study HAR from a feature perspective, and include the
three aforementioned categories of representations into our
analysis. By considering factors central to wearable comput-
ing, such as memory footprint, and feature dimensionality,
we draw conclusions regarding the properties of the repre-
sentations from our experiments. We offer insights as well as
guidelines to practitioners and researchers in HAR. The con-
clusions are drawn based on the recognition accuracy demon-
strated by the representations, the impact on resources they
cause, and the suitability of the representations for differ-
ent activities. The recognition accuracy studies the absolute
performance of the representations, while the impact on re-
sources analyzes the applicability of the representations in
the resource constrained scenarios prevalent in HAR. Finally,
the suitability of representations examines which representa-
tions work for target activities. Put together, these consider-
ations allow us to obtain optimal representations for specific
recognition tasks (and activities) by accounting for the trade-
off between resource requirements and performance. The
contributions of this paper are as follows:

• We introduce novel convolutional and recurrent au-
toencoder models to explore the extent to which un-
supervised sequence modeling methods can advance
the state-of-the-art in feature learning for HAR [37].

• Feature representations are evaluated on standard bench-
mark datasets that are diverse in terms of the number
of subjects, kinds of activities performed, goals, set-
tings, and the number of samples.

• By considering factors integral to wearable computing
(memory footprint, amount of training data required,
number of trainable parameters), we develop insights
into designing more optimal recognition systems.

• Through our experiments we demonstrate that op-
timized feature learning integrated into the conven-
tional ARC leads to comparable, if not better activity
recognition offered by end-to-end learning models yet
with more flexibility for optimization w.r.t. constraints
and limitations inherent to wearable computing.

2 FEATURE EXTRACTION IN HAR
The investigation and understanding of sensor data proper-
ties is key to finding a representation that directly captures
its core characteristics. In HAR, there is no all-encompassing
model that affords the expert-driven design of a universal
feature representation that would explain the underlying
physical phenomenon that HAR addresses [16]. As such, the
state-of-the-art for HAR features comprises more or less de-
scriptive representations of the raw signal, which are often
driven by heuristics. Alternatively, recent developments in
machine learning, especially deep learning have the potential
of overcoming this shortcoming by automatically learning
relevant feature representations for sensor data.
Conventional feature extraction methods aim at finding

compact and descriptive representations of sensor data thereby
typically not exploiting any actual domain knowledge. A
wealth of heuristics has been developed that aim at extract-
ing either time-domain features, such as statistical moments,
or spectral features that directly encode frequency character-
istics [9]. Alternatively, direct encodings of temporal aspects
of the sensor data have been used, e.g., through time-delay
embedding [10], or through discretization of the time-series
(e.g., [28, 30]). Apart from these, classic dimensionality re-
duction techniques such as PCA have been used in HAR [37].
Distribution based approaches represent the state-of-the-art
for conventional feature extraction in HAR, where quan-
tiles of the (inverted) empirical cumulative density function
represent sensor readings within an analysis frame [19, 25].

In contrast to heuristic feature design, feature learning op-
timizes an objective function to derive a meaningful data rep-
resentation. This can broadly be categorized into supervised
and unsupervised learning. While we study the performance
of both unsupervised and supervised methods, special em-
phasis is placed on unsupervised methods, as they have the
advantage of automatically deriving generalizable features
from unlabelled data [21, 37]. Recent progress in general
representation learning motivates us to explore the potential
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of feature learning for HAR beyond the initial introduction
using Restricted Boltzmann Machines [37].

Deep networks have the capability to learnmeaningful rep-
resentations without utilizing class labels [21]. This includes
approaches such as generative modelling, autoregressive
networks, and self-supervised learning [13, 14]. Generative
modelling assumes that the characteristics of the data can be
discovered by learning how to generate them, and that sub-
sets of the characteristics are then suitable for differentiating
between classes [20]. They have been applied, for example,
to learn unsupervised representations for video classifica-
tion [40], for audio scene classification [3], and for obtaining
vector representations for words in NLP [29]. Autoregres-
sive networks split high dimensional data into a sequence
of small pieces and predict each piece from those before.
They have been used, e.g., for generating raw audio [42].
Self-supervised learning utilizes domain expertise to define a
prediction task which requires semantic understanding [14].
They are utilized to learn features by predicting geometric
transformations, and solving jigsaw puzzles [24].

The state-of-the-art in HAR consists of end-to-end learn-
ing approaches that do not explicitly distinguish between
representation learning and optimizing a classification func-
tion. In [44], convolutional neural networks (CNNs) were
developed for multichannel time series data. Similarly, the
authors in [46] designed a CNN, which outperformed other
representations based on distributions, PCA, statistical met-
rics, and fully connected neural networks. To utilize the
time-series nature of the sensor data, ensembles of recurrent
neural networks (RNN) have been used in [15] for performing
HAR. The application of recurrent neural networks for HAR
is extended in [45], where continuous attention mechanisms
over the sensory channels as well as time are developed to
improve the performance. DeepConvLSTM [34] uses a combi-
nation of convolutional and recurrent layers. Improvements
to the DeepConvLSTM have been proposed in [32], where
an attention mechanism is added on the long short-term
memory (LSTM) network to determine the ‘important’ time
steps. While the supervised models provide excellent perfor-
mance, they come with the cost of requiring large amounts
of annotated data to perform learning. This is both time and
cost intensive, as it requires domain expert knowledge. We
aim at specifically assessing the role of features in the com-
plete HAR pipeline, hence end-to-end learning is discussed
here mainly for completeness. However, when discarding
the final layer of such complex, deep neural networks the
activations of the penultimate layer can be used as features.

3 DATASETS
Our explorations are based on benchmark datasets that rep-
resent the state-of-the-field in HAR. All datasets were either

recorded with 33Hz sampling rate or downsampled accord-
ingly. Sliding window segmentation obtained frames of 1s
length and 50% overlap between subsequent windows.
Opportunity
Opportunity contains recordings from four participantswear-
ing a range of sensors while pursuing kitchen routines [7].
We use annotations that are provided for 18 mid-level ac-
tivities. For training and evaluation, we employ the same
protocol as [18]: The second run from participant 1 is used
for validation, while runs 4 and 5 from participants 2 and 3
are used for test. The rest of the data is used for training.
Skoda
This dataset was recorded in a manufacturing scenario aim-
ing to recognize activities of assembly-line workers in a
car production environment [41]. Ten quality checks were
recorded using 10 body-worn accelerometers (D = 60). The
training set consists of the first 80% of each class, followed
by validation and test sets taking up a remaining 10% each.
PAMAP2
PAMAP2 contains a total of 12 activities of daily living such
as domestic activities, and various sportive exercises (nordic
walking, running, etc) [39]. Over 10 hours of data were col-
lected using a range of body-worn sensors (D = 52). Repli-
cating the protocol from [18], we used runs 1 and 2 from
participant 5 for validation and runs 1 and 2 from participant
6 for testing. The remaining data is used for training.
USC-HAD
The USC-HAD dataset [47] was collected on the MotionN-
ode sensing platform and consists of data from 14 subjects.
Twelve activities were recorded and they include various
walking motions, jumping, sitting, etc. Participants 1 − 10
form the training set, while participants 11 and 12 form the
validation set, and participants 13 and 14 comprise the test
set.
Daphnet Freezing of Gait Dataset
This dataset contains data from ten subjects with Parkin-
son’s Disease, who experience freezing of gait (FoG) in daily
life [4]. Data were recorded using three body-worn 3D ac-
celerometers (D = 9). More than eight hours of data were
recorded in which physiotherapists identified 237 FoG events
in a post hoc video analysis. Participants 9 and 2 form the
validation and test sets, while the rest of the data used for
training.

4 METHODOLOGY
The standard activity recognition chain (ARC, [6]) defines
a series of processing steps, where each step has a clearly
defined goal. However, substantial manual optimizations are
necessary for each part of the pipeline – with known issues
such as poor generalization, thereby causing the need for
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specialized domain knowledge which hinders widespread
adoption. On the other hand, this process can be heavily
optimized with respect to computational resources (such as
memory and processing power). In this manner, the pipeline
can be deployed with ease on wearables themselves, without
the need for offloading the computation to external servers.

In this study, we focus on the fourth step of the pipeline –
Feature Extraction. A number of previous works exist, which
utilize statistical features, data-driven representations like
PCA or distribution-based representations. Papers such as
[37] and [2, 43] study deep-learning based RBMs and stacked
autoencoders. However, little analysis has been done towards
utilizing more powerful variants of autoencoders, which, for
example, include convolutional and recurrent layers. Three
general types of autoencoders exist: i) vanilla; ii) convolu-
tional; and iii) recurrent. In [43] and [2], vanilla (or stacked)
autoencoders have already been studied. In order to capture
the temporal aspect of the sensor data, we study recurrent
autoencoders. On the other hand, the spatio-temporal aspect
of data is exploited using convolutional autoencoders.

The performance of these autoencoder-based feature rep-
resentations is contrasted to state-of-the-art statistical fea-
tures, a distribution-based representation (ECDF [19]), and
a representation extracted using a supervised classifier –
DeepConvLSTM [34]. We also compare overall classification
capabilities of the explored feature representations within
the ARC paradigm [6] to a state-of-the-art end-to-end HAR
system that does not separate representation learning from
classifier training (DeepConvLSTM [34]).

Statistical features
Weutilize the statistical metrics detailed in [36]. They include
the DC mean, variance, correlation, energy and frequency
domain entropy. The DCmean is the averaged accelerometer
reading in a time interval, while the variance characterizes
the stability of the signal. Energy captures the periodicity of
the signal and the frequency domain entropy helps discrim-
inate between activities of similar energy. The correlation
is computed between all pairwise combinations of axes and
captures the correlation between different axes.

Distribution-based representation
Sensor data are time-series, i.e., each reading is contextual-
ized by its temporal neighbors. Distribution-based represen-
tations take advantage of these correlations by computing
the empirical cumulative distribution (ECDF) of the data in
each frame. At the heart of ECDF lies the idea to extract a
fixed set of real-valued coefficients that best represents the
underlying distribution for each degree of freedom within
a frame (i.e., each sensing axis of the accelerometer data)
[19]. The ECDF representation fi for a degree of freedom of

analysis frame i is obtained by first estimating the ECDF P ic :

P ic = P(X ≤ x), (1)

which is quantified by selecting d equally spaced, monoton-
ically increasing points C = p1...pd ∈ [0 . . . 1]. For each of
those points, the value xk is estimated, for which P ic (x) = pk :

C = pi ∈ R
d
[0,1],pi < pi+1 (2)

fi = x, ∃j : P ic (x) = pj , (3)

where cubic interpolation is used to obtain each x . The new
representation for each analysis frame i then corresponds
to the concatenated ECDF representations of each sensing
channel. In effect, this process provides an estimate for the
quantile function for each of the selected points in C . The
d-dimensional representation fi fully covers the spatial posi-
tion of a distribution, as well as its overall shape. The only
tunable parameter is the number of points at which the in-
verse of Pc is interpolated, which controls the granularity
for capturing the shape of Pc in the final representation [19].

Autoencoder-based unsupervised representations
An autoencoder is an unsupervised neural network that is
trained to reconstruct the input after being passed through a
series of layers. Internally, an autoencoder has a hidden part
h, that consecutively performs linear as well as non-linear
transformations to obtain a latent representation of the input.
The network consists of two parts: i) an encoder function
h = f (x), which transforms input data x ; ii) and a decoder
that produces the reconstruction r = д(h). The network is
restricted such that h has lower dimensions than x , thereby
creating an intentional bottleneck. Thus, an autoencoder is
forced to prioritize some aspects of the input data that need
to be copied and thereby learns compact representations [12].
Learning aims at minimizing the loss function:

L(x,д(f (x))), (4)

where L penalizes д(f (x)) for being dissimilar from x . Typi-
cally, mean squared error (MSE) is used as the loss function
and h is used as the latent representation (or the bottleneck
feature) for tasks such as classification and clustering.
Vanilla autoencoders. For the simplest form of autoencoders
both the encoder and decoder consist of multi-layer percep-
trons (MLP). Excluding the bottleneck layer, the encoder
consists of three fully connected layers that consecutively
reduce the dimensionality of the representation (in our case
containing 2048, 1024 and 512 units, respectively). The de-
coder mirrors the encoder. One frame of data is vectorized
and passed as input to the model.

Convolutional autoencoders. Convolutional autoencoders uti-
lize convolutional layers in lieu of the fully connected layers
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Figure 1: Overview of the convolutional autoencoder used in this study (see text for description).
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Figure 2: Recurrent autoencoder used in this study.

(cf. Figure 1 for architecture overview). In our case, input con-
sists of individual frames (1s), and the autoencoder considers
it as a single channel image. The encoder contains four con-
volution blocks, leading to the bottleneck layer. Each of these
blocks contains two 3 × 3 convolution layers with the same
number of filters. Batch normalization is performed after
each layer, and the convolution layers are followed by 2 × 2
max-pooling. The output of the last convolution block in the
encoder is flattened into a vector, and is then connected to the
bottleneck layer (from which the latent representations are
taken). The decoder inverts the encoding operations step-by-
step including convolution, upsampling and interpolation,
reshaping, and padding operations to match the sizes of the
corresponding encoder convolution blocks [33]. Throughout,
ReLU activation functions are used, and hyperbolic tangent
is used for the output.
Recurrent autoencoders. In a recurrent autoencoder, Vanilla
RNNs or more powerful variants such as long short-term
memory networks (LSTM) [22], or gated recurrent units
(GRU) [8] are used for both encoder and decoder [40]. In our
model (Figure 2), both encoder and decoder are initialized
with zeros and the input sequence (length: n), is passed to
the encoder. The final state of the encoder is passed through
the bottleneck layer before being connected to another fully-
connected (FC) layer. The resulting output is replicated n
times, and used as input to the decoder. The loss between
the input and output, i.e., reconstructed sequences is used to
update the model parameters. In this work, we utilize LSTMs
and GRUs in the recurrent autoencoder architectures.

DeepConvLSTM-based supervised representations
The DeepConvLSTM architecture (introduced in [34]) con-
sists of four convolutional layers with 64 filters, and a filter

size of 5 × 1. The output of these convolutional layers is con-
nected to a two-layer LSTM with 128 hidden units. The last
hidden state of the LSTM is connected to the softmax output
layer. We explore the effect of representation dimensionality
on the performance, for which we add another FC layer af-
ter the LSTM whose dimension can be varied. To compute
the DeepConvLSTM-based representations, we perform a
forward pass until the penultimate fully-connected layer.

DeepConvLSTM utilizes both convolutional and recurrent
layers to model the temporal aspects of time-series sensor
data. It offers excellent performance on a variety of HAR
datasets, and constitutes the state-of-the-art. Its generally
superior performance, coupled with the well studied network
architecture make it an excellent candidate for a baseline.

Classifier
We explore the role of the data representation in HAR. As
such, we fix the classification backend, namely using a state-
of-the-art probabilistic classifier – a Multi-Layer Perceptron
(MLP). Our MLP classifier has two layers, followed by the
softmax output layer. These layers contain 2048 and 512 units
respectively, and each layer is followed by batch normaliza-
tion. The activation function used is ReLU.
The choice of utilizing an MLP classifier is rooted in its

superior performance when compared to other classifiers,
such as ones based on support vector machines and ran-
dom forests, especially at higher dimensions. Additionally,
popular deep learning frameworks such as Tensorflow and
Pytorch facilitate the easy utilization of graphical processing
units to massively parallelize computations, thereby reduc-
ing the time taken for evaluation (when compared to the
other classifiers, which are computed on the CPU).

Performance metrics
The mean f1-score is utilized as the core metric. The datasets
used in this study, Opportunity in particular, are imbalanced
and hence require performance metrics that are less prone
to be negatively affected by biased class distributions [38].

5 RESULTS
Using the methodology outlined in the previous section, we
conducted our exploration study on the benchmark datasets
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Figure 3: Classification performance (F1) results.

as summarized before. We extracted the variants of features,
and then trained classification systems according to the pro-
tocols as defined for the respective benchmarks. The choice
of data representation is of crucial importance for the ef-
fectiveness of a HAR system. First and foremost, the fea-
tures directly impact its classification capabilities. While the
absolute performance of a HAR system is vital, a number
of additional factors unique to HAR need to be considered.

These factors involve limitations and restrictions of wearable
systems such as memory requirements, computation power,
computation time, and the amount of training data needed.
Any study of the design of wearable recognition systems
is incomplete without the consideration of these factors by
designers and practitioners as they dictate the practical effec-
tiveness and implementation of these systems on wearable
devices. In what follows, we analyze the implications of the
different feature extraction paradigms on these aspects:

Dimensionality: We study how the classification per-
formance is affected by the dimensionality of data rep-
resentation. This is an important factor for HAR as
lower feature dimensions not only result in lower com-
putational costs and computational time during clas-
sification, but also in alleviated demands on size of
datasets for training and validating the overall HAR
system. In wearable computing it is particularly chal-
lenging to obtain large amounts of annotated sample
data, and thus reducing dimensionality helps utilizing
training data more economically.

Memory footprint: Onboard memory on wearables is
limited, and hence, the memory required to store mod-
els used to compute the representations is a vital factor.

Number of trainable parameters for deriving data rep-
resentations: Learned features are the most promising
methods with regard to overall classification capabil-
ities and generalization capabilities across different
domains. The number of trainable parameters of such
feature learners is directly linked to the overall effort
required to compute the representations, which has
implications specifically for interactive scenarios in
which features need to be extracted on-the-fly, and
models potentially be adapted in real time. Note that
the number of trainable parameters is an indication of
the complexity of a model and not necessarily (nor ex-
clusively) linked to the dimensionality of the features.

Dependence on amount of training data: The size of
the datasets in HAR is generally smaller than in other
domains, which is reasoned by practicalities of how
data from wearables is recorded and annotated [31].
Hence, representations which require less data to per-
form comparably are more suitable for HAR. Some
learning methods require more (or less) variability in
the training data in order to derive robust representa-
tions and as such the evaluation of required sample
set size for fixed feature dimensionalities and model
complexities is an important aspect of our exploration.

Dimensionality
Figure 3 illustrates the classification capabilities of our MLP-
based HAR system for the five considered datasets, utilizing
the eight different feature representations. Statistical features
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have constant dimensionality, which is listed in the diagrams.
Dashed lines across the panels are only added for better
comparability. The dimensionality of the distribution-based
representation corresponds to the number of components
computed (Equation 1). We set this number such that the
resulting feature dimensions match the dimensions of vari-
ants of the learned features . However, the number of ECDF
components is limited by the length of the frame and thus
the number of samples considered (in our case: 30). Thus,
for USC-HAD and Daphnet FoG, the maximum number of
dimensions possible is limited to 250 (Figure 3). The plots of
the learned feature representations illustrate substantial fluc-
tuation of classification performance depending on feature
dimensionality with variation across the different datasets.

For Opportunity, i.e., a dataset that contains non-repetitive
activities with substantial variation in duration and overall
apperance [27], the Convolutional AutoEncoder (CAE) pro-
vides the best performing features with about 500 dimen-
sions. DeepConvLSTM and Recurrent AE (LSTM) only match
the performance of the CAE at 2000 dimensions, i.e., at a
much higher dimensionality, which renders them less attrac-
tive for many wearable computing scenarios with resource
constraints. The distribution-based representation obtains
similar performance as the CAE at 250 dimensions. Thus,
CAE and ECDF provide excellent performance at a fraction of
the number of dimensions that other representations require.
The results are very different for Skoda, a dataset with

fewer activities and less variability overall [27]. DeepCon-
vLSTM provides the best performance – already with 50-
dimensional features. CAE and Recurrent AE provide similar
performances at this low dimensionality. The worst perfor-
mance is shown by the Vanilla AE on the ECDF feature.
For PAMAP2, a dataset that contains short, repetitive ac-

tivities, relatively low-dimensional representations (D = 250)
lead to peak performance when using a recurrent AE. The
distribution-based representation performs best at a similar
dimensionality, but with around 5% lower F1-score. Other
representations require ≥ 1, 000 dimensions to perform well.
For USC-HAD, a dataset that contains activities that are

not as repetitive as the ones covered by PAMAP2 but at the
same time less complex than what is covered by Opportunity,
500-dimensional features learned with a Vanilla AE on raw
data lead to best HAR performance. Interestingly, the more
complex feature learners require much higher-dimensional
features (D = 2, 000) to achieve comparable performance,
and both statistical and distribution-based features lead to
substantially worse classification results.
Daphnet-FOG is a dataset that essentially contains only

one target class that exhibits substantial variability but is
fundamentally different from all other activities performed
by the participants. FOG episodes differ in duration but
tend to be short overall. DeepConvLSTM and Vanilla AE

Opportunity Skoda PAMAP2 USC-HAD Daphnet FoG
Dataset
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Figure 4: Number of trainable parameters required to com-
pute the representations on different datasets.

on raw data achieve similar performances with comparably
low-dimensional representations (D = 100). ECDF based
recognizers also peak at around this dimensionality of the
extracted features. In contrast, the Convolutional AE out-
performs all other models even with only 10 dimensional
representations (yet its peak performance requires much
higher-dimensional features, D = 1000).

Number of Trainable Parameters
All feature learners contain a number of trainable param-
eters, such as the computation nodes in the various lay-
ers of the variants of autoencoders as studied in this paper.
The distribution-based representation does not have any
trainable parameters, and neither does the statistical fea-
ture representation. Trainable parameters can be interpreted
as an advantage because they allow for more complex and
thus potentially more effective feature extraction, or can be
considered a liability because they explicitly require (sub-
stantial amounts of) training data, which are often difficult
to obtain. They also may be prone to overfitting and poor
generalization. Figure 4 gives an overview of the number
of trainable parameters in the explored variants of feature
extraction methods. Not surprisingly, the recurrent AE com-
prise the largest number of trainable parameters, followed
by the vanilla AE (across all datasets). Interestingly, the com-
plexity of vanilla AE varies significantly and correlates with
the complexity of the datasets they are trained for, whereas
the number of trainable parameters remains approximately
constant for the recurrent and convolutional AE.

Memory footprint
Figure 5 details the amount of memory required, e.g., on-
board a wearable, for the representation learning. Since the
distribution-based representation and the statistical features
are computed directly, the bar plot shows a zero (gap). The
Recurrent AE (GRU and LSTM) require the highest amount
of memory (around 40 MB in our experiments). In com-
parison, the Convolutional AE requires only half as much
memory. Among the learned features, the DeepConvLSTM

84



ISWC '19, September 9–13, 2019, London, United Kingdom Harish Haresamudram, David V. Anderson, and Thomas Plötz

Opportunity Skoda PAMAP2 USC-HAD Daphnet FoG
Dataset

0

10

20

30

40

50

M
em

or
y 

fo
ot

pr
in

t o
n 

di
sk

 (M
B)

Vanilla AE - Raw
Vanilla AE - ECDF

Conv. AE - Raw
ECDF features

Deep ConvLSTM
Statistical features

Recurrent AE (LSTM) - Raw
Recurrent AE (GRU) - Raw

Figure 5: Amount of memory required to store models for
computing representations on different datasets.
based features require the least amount of memory. Thus,
in terms of memory requirements, the distribution-based
and DeepConvLSTM-based representations present the best
option. Additionally, while the memory requirement for the
Convolutional AE is higher, the potential improvements in
performance render it a good alternative.
Dependence on Amount of Training Data
Representations resulting in good HAR performance even
when only small datasets are available are critical specifi-
cally for wearable computing. As such, the dependency on
large amounts of training data for deriving the feature rep-
resentations is an important aspect of our explorations. For
fair comparison, we fix the feature dimensionality for this
evaluation to a common number (D = 500, which repre-
sents a reasonable enough compromise across the different
models and datasets) and study how the classification perfor-
mance changes when reducing the amount of training data.
For these evaluations we gradually reduce the amount of
training data by randomly removing percentages of samples
from the original datasets. We then train the systems on the
reduced datasets and report classification performance (F1).
Figure 6 illustrates the results for all five datasets and

all eight variants of feature extraction. For the more com-
plex datasets such as Opportunity and Skoda, the general
trend is that a strong dependency on large enough datasets
exists. All feature extraction methods suffer from smaller
training sets as manifested by the substantial drop in classi-
fication performance using the resulting HAR systems. For
the other datasets that contain more repetitive and shorter
target activities (PAMAP2, USC-HAD, Daphnet FOG) such
a dependency is not as clear. While there are substantial
differences between the various feature extraction methods,
the relative changes in resulting classification performance
do not change much for the individual systems when re-
ducing the amount of training data. Some outliers to this
general trend are noticeable, such as the rather "erratic" be-
havior of the Vanilla AE trained on ECDF input for both

20 40 60 80 100
Percent of training data

0.35

0.40

0.45

0.50

0.55

0.60

0.65

0.70

Te
st

 f1
-s

co
re

Opportunity

20 40 60 80 100
Percent of training data

0.80

0.82

0.84

0.86

0.88

0.90

0.92
Skoda

20 40 60 80 100
Percent of training data

0.65

0.70

0.75

0.80

0.85

Te
st

 f1
-s

co
re

PAMAP2

20 40 60 80 100
Percent of training data

0.2

0.3

0.4

0.5

0.6

USC-HAD

20 40 60 80 100
Percent of training data

0.500

0.525

0.550

0.575

0.600

0.625

0.650

0.675

0.700

Te
st

 f1
-s

co
re

Daphnet

Vanilla AE - Raw
Vanilla AE - ECDF
Convolutional AE - Raw
ECDF features
Deep ConvLSTM - Raw
Recurrent AE (LSTM) - Raw
Recurrent AE (GRU) - Raw
Statistical features
DeepConvLSTM baseline 
(see discussion for details)

Figure 6: Classification performance (F1) related to percent-
age of sample data available for deriving features.

PAMAP2 and Daphnet-FOG. Presumably, the distribution
based input representation somewhat counteracts the repre-
sentation learning process of the autoencoder. Overall, the
results are encouraging for application scenarios that target
the analysis of less complex activities as it is often the case
for wearable computing, such as in automatically logging
activities of daily living. Even more complex feature learners
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can be used–if needed, cf. the excellent recognition capabili-
ties of more conventional features such as the distribution
based representation–and do not require substantial amount
of training data. For more complex activity recognition (as
in Opportunity) substantial amounts of training data are re-
quired if feature learners are used. However, it is not clear
whether such complex models are actually needed given
that non-learned, distribution-based features already lead to
effective classification already.

6 DISCUSSION
Arguably, proper data representation, i.e., features play an
important role in the Activity Recognition Chain (ARC), as it
is widely used in wearable computing [6]. In the past much
work has been invested into feature design, yet with limited
success towards developing a thorough understanding for
how to capture the relevant physical phenomena underly-
ing human activities as they are captured using body-worn
sensors. This work aimed at systematically exploring and
quantifying the impact contemporary feature representa-
tions have on human activity recognition scenarios in wear-
able computing. In what follows, we draw conclusions from
our study and offer insights for HAR researchers as well as
guidelines for practitioners of HAR in wearable computing.
The focus of our considerations is on: i) overall recognition
accuracy; ii) impact on resources (and their constraints); and
iii) suitability for different categories of target activities.

Recognition Accuracy
The past few years have seen an explosion of research into
end-to-end, typically deep, learning methods [12], with spec-
tacular improvements in classification results in very chal-
lenging domains such as computer vision or natural language
processing. The wearables community also has adopted such
techniques and remarkable recognition results on bench-
mark dataset can now be achieved–offline–using variants of
end-to-end learning methods, e.g., [15, 34, 46]. Notably, the
focus of model developments here is often on recognition
performance alone, ignoring challenges inherent to wearable
computing in terms of availability and quality of annotated
training data, and substantial resource constraints [35].

As part of our explorations we have compared the various
variants of feature extraction schemes and their effectiveness
within the conventional activity recognition chain (ARC) to
state-of-the-art end-to-end learning. Remarkably, the differ-
ences between ARC (using sophisticated feature extraction
methods) and ConvLSTM models (as an example of state-
of-the-art deep learning approaches) are far less than what
one might have expected and often ARC based systems with
specifically optimized (learned) features outperform the end-
to-end learning systems (see yellow dotted lines in Figures
3 and 6). As a consequence, ARC –with reasonable feature
extraction schemes–has its place in wearable computing.

Dealing with Resource Constraints
Typical wearables scenarios have strict resource constraints
with regards to memory and computational power, and most
importantly battery power, which often prevents the appli-
cation of deep learning models. For such scenarios statistical
and especially distribution-based data representation remain
attractive options with recognition capabilities that are com-
parable to latest feature learning methods as explored in this
paper. The distribution-based representation performs better
even with very small amounts of sample data.

For less constrained scenarios, feature learning represents
an attractive alternative to distribution based representa-
tions, outperforming these on most datasets. Interestingly,
integrating learned features into the ARC leads to results that
are comparable to those achieved when using end-to-end
learning methods that do not explicitly discriminate between
representation learning and classifier optimization. This is
encouraging, because the ARC typically requires substan-
tially fewer resources than end-to-end learned models.

Suitability for Different Categories of Activities
Despite the desire for generalization, so far no single, univer-
sally optimal feature extraction method has been developed
for HAR using wearables. As such, it remains relevant to ex-
plore which representations are suitable for which categories
of target activities. Convolutional AE based representation
lead to best performance for scenarios with large variations
in duration and overall appearance of the target activities
(e.g., Opportunity). The convolutional layers are better suited
to capture underlying spatio-temporal relations in such data.

For shorter, more repetitive activities (such as in PAMAP2),
less complexmodels can be used for feature learning. Interest-
ingly, state-of-the-art recurrent autoencoders lead to better
performing features for such scenarios, which is somewhat
in contrast to what has been reported previously [18].

7 CONCLUSION
We have explored the role of data representations in HAR
using wearables. We conclude that the conventional activity
recognition chain (ARC) in combination with state-ot-the-
art feature learning methods lead to recognition systems
that show comparable if not better performance to those ob-
tained from latest end-to-end deep learning systems, which
highlights the importance of suitable feature representations.
This is encouraging, because it allows designers of wear-
able computing systems to specifically optimize components
of the ARC for suitability in a wearable system, which the
monolithic end-to-end learning architectures do not. From
these systematic studies, we have identified three key aspects
of HAR using wearables that allow practitioners to choose
suitable feature extraction schemes.
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